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Abstract. We present a class of optimum ground states for quantum spin- 3
2

models on the Cayley tree
with coordination number 3. The interaction is restricted to nearest neighbours and contains 5 continuous
parameters. For all values of these parameters the Hamiltonian has parity invariance, spin-flip invariance,
and rotational symmetry in the xy-plane of spin space. The global ground states are constructed in terms of
a 1-parametric vertex state model, which is a direct generalization of the well-known matrix product ground
state approach. By using recursion relations and the transfer matrix technique we derive exact analytical
expressions for local fluctuations and longitudinal and transversal two-point correlation functions.

PACS. 75.10.Jm Quantized spin models

1 Introduction

The Cayley tree belongs to the category of pseudo-
lattices [1]. Unlike regular lattices, which are usually de-
fined in terms of periodic structures, the Cayley tree is
generated by the following recursive scheme:

1. A Cayley branch of order 1 is a single site.
2. A Cayley branch of order n is defined as a site with
K+1 bonds, to which K Cayley branches of order n−1
are attached, i.e. the branch has 1 unconnected bond.

3. A Cayley tree of order n is given by a central site with
K+1 bonds, to which K+1 branches of order n−1 are
attached.

K is called the connectivity, K+1 is the coordination num-
ber of the Cayley tree. Figure 1 shows a finite Cayley tree
with K = 2, i.e. coordination number 3. In the thermody-
namic limit n → ∞ the Cayley tree is also known as the
Bethe lattice.

An important property of the Cayley tree is that there
is exactly one path from a site i to another site j. The
distance |i−j| between i and j is simply the number of
edges on this path. We can use the distance function to
divide the Cayley tree into two disjoint sublattices. Denote
the central site by i0. An arbitrary site i belongs to the
sublattice LA if |i0−i| is even, otherwise i belongs to the
sublattice LB. It is easy to see that every site i ∈ LA has
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Fig. 1. A finite Cayley tree with coordination number 3.

only nearest neighbours in LB and vice versa, so (LA,LB)
is a bipartite decomposition of the Cayley tree. Note that
this result is valid for any connectivity K.

Due to the hierarchical structure of the pseudo-lattice,
the partition function of a classical statistical model on the
Cayley tree can usually be calculated by using recursion
relations, provided the local interaction has finite range
and the number of states at each site is also finite. This is
a substantial step beyond models on the chain, as it allows
to construct exactly solvable models with arbitrary coor-
dination number. The most important drawback of the
Cayley tree is that for large system sizes 1

K th of the sites
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are boundary sites1. As a consequence the physics is heav-
ily influenced by boundary effects. There is no canonical
way to impose periodic boundary conditions.

In this work we investigate the ground state problem
of a class of quantum spin- 3

2 models on the Cayley tree
with connectivity K = 2. The paper is organized as fol-
lows. Section 2 contains the definition of the Hamiltonian
and discusses its parameters and symmetries. The global
ground state is constructed explicitly in Section 3 in terms
of a vertex state model. Vertex state models are graphi-
cal realizations of so-called optimum ground states, which
simultaneously minimize all local interaction operators.
Ground state properties, i.e. single-spin and two-point ex-
pectation values are presented in Section 4. As shown in
Appendix A the calculation of ground state expectation
values leads to a classical vertex model on the Cayley tree,
which can be solved exactly. Finally we summarize our re-
sults in Section 5.

2 Model definition

The model is defined on the Cayley tree with coordina-
tion number 3, i.e. K = 2. A quantum spin- 3

2 is located
at each site. These spin variables are coupled by nearest
neighbour interaction terms hij , which are the same for
all neighbour pairs 〈i, j〉. The global Hamiltonian H is
the sum of all these local interactions, so the system is
completely homogeneous.

The local interaction is the same as in our previous
works on the hexagonal lattice [5] and the two-leg ladder
[6]. Hence we shall be very brief here. For the construc-
tion of optimum ground states it is advantageous to write
the interaction operator in terms of projectors onto its
eigenstates

hij = λ3 (|v3〉〈v3|+ |v−3〉〈v−3|)
+λ−σ2

(
|v−σ2 〉〈v−σ2 |+ |v−σ−2 〉〈v−σ−2 |

)
+λ+

12

(
|v+

12〉〈v+
12|+ |v+

−12〉〈v+
−12|

)
+λ−σ02 |v−σ02 〉〈v−σ02 |.

(1)

If we use the following notation for the canonical basis
states of a single spin- 3

2 ,

Sz|3〉 = 3
2 |3〉 Sz|3〉 = − 3

2 |3〉
Sz|1〉 = 1

2 |1〉 Sz|1〉 = − 1
2 |1〉 ,

(2)

the eigenstates used in (1) are given by

|v3〉 = |33〉
|v−3〉 = |33〉
|v−σ2 〉 = |31〉 − σ|13〉
|v−σ−2 〉 = |31〉 − σ|13〉
|v+

12〉 = a|11〉 −
(
|31〉+ |13〉

)
|v+
−12〉 = a|11〉 −

(
|31〉+ |13〉

)
|v−σ02 〉 = σa2

(
|11〉 − σ|11〉

)
−
(
|33〉 − σ|33〉

)
.

(3)

1 For small system sizes the percentage of boundary sites is
even larger.

The parameters λ3, λ
−σ
2 , λ+

12, λ
−σ
02 are real and positive and

the superposition parameter a is real. σ is a discrete param-
eter, which can only take the values ±1. Thus the total
number of continuous parameters is 5, which includes a
trivial scale, so there are 4 non-trivial interaction param-
eters.

For all values of the parameters hij (1) commutes with
the pair magnetization operator Szi +Szj and with the par-
ity operator Pij , which interchanges the spins at sites i
and j. Therefore the local interaction (1) has rotational
symmetry in the xy-plane of spin space and is parity in-
variant. In addition, corresponding eigenstates with mag-
netization m and −m carry the same λ-coefficient, so hij
is also invariant under a spin-flip Sz → −Sz. In particular,
no external magnetic field is applied.

As all λ-parameters are positive, (1) is a positive semi-
definite operator, i.e. all its eigenvalues are non-negative.
The two-spin states (3) are the excited local eigenstates
of hij , the remaining 9 eigenstates are local ground states,
i.e. the corresponding eigenvalue is zero. Since the Hamil-
tonian H is the sum of positive semi-definite operators,
the global ground state energy E0 is non-negative, too. In
the next section we shall show that E0 is in fact zero and
the corresponding global ground state will be constructed
explicitly.

At the isotropic point, a = −
√

3 and σ = −1, the
λ-parameters can be adjusted so that hij has the form

hij = Si · Sj +
116
243

(Si · Sj)2 +
16
243

(Si · Sj)3 +
55
108
· (4)

Obviously, this operator has complete SO(3) symmetry. It
simply projects onto all states with (Si + Sj)2 = 3(3 + 1).
This case has already been investigated in [2]. Its ground
state is known as the valence bond solid (VBS) ground
state. As shown in [2], it has exponentially decaying cor-
relation functions, no Néel order, and there is an energy
gap between the ground state and the lowest excitations.
This is consistent with our results presented in Section 4.

3 Construction of the global ground state

In this section we construct the exact ground state of the
present model. It is an optimum ground state [3–6], i.e.
it is not only the ground state of the global Hamiltonian
H, but also of every local interaction operator hij . For
spin chains such global states can be generated by us-
ing so-called matrix product ground states (MPG) [3,4]. A
generalization of the MPG concept to arbitrary lattices is
given by vertex state models [4–6], which have been used to
construct optimum ground states on the hexagonal lattice
and on the two-leg ladder.

In order to construct the global ground state for the
present model, we assign the following set of vertices
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to each site on the first sublattice of the Cayley tree:
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(5)

The corresponding vertices on the second sublattice are
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(6)

Unlike a classical vertex model, each vertex has a single-
spin state α|m〉 as its value (or “weight”), where

m = 1
2 (number of outgoing arrows

−number of incoming arrows).
(7)

The parameters a and σ are the same as in (3). Both sets
of vertices differ only with respect to the positions of the
σ-coefficients. Note that (5) and (6) are the same as on the
hexagonal lattice [5], only the global topology is different.

The global ground state |Ψ0〉 is generated by con-
catenating the vertices at all sites. As in usual classical
vertex models of statistical physics, the connecting bond
between adjacent sites is summed out. The generic prod-
uct of vertex weights is replaced by the tensorial product

in spin space:
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(8)

It can be shown that the resulting global state is indeed
an optimum ground state of H by collecting all two-spin
states which are generated by all possible concatenations
of neighbouring vertices2:

|31〉+ σ|13〉 |31〉+ σ|13〉
|11〉+ a|31〉 |11〉+ a|31〉
|11〉+ a|13〉 |11〉+ a|13〉
|11〉+ σa2|33〉 |11〉+ σa2|33〉
|11〉+ σ|11〉 .

(9)

These 9 two-spin states are orthogonal on all excited local
states (3), so (9) are the local ground states of hij . There-
fore it is clear that any projection of |Ψ0〉 onto the space of
two adjacent sites is a linear combination of local ground
states. This yields

hij |Ψ0〉 = 0 (10)

for all nearest neighbours i and j and hence also

H|Ψ0〉 = 0 . (11)

Since zero is a lower bound of the global ground state
energy, the constructed vertex state model is indeed an
optimum ground state of the global Hamiltonian H.

In contrast to regular lattices there is no canonical way
to impose periodic boundary conditions on the Cayley
tree, so open boundary conditions are used. In this case,
the vertices on the boundary sites (“leafs”) emanate exter-
nal bonds which are not summed out. Independent of the
arrow configuration on these external bonds, the resulting
vertex state model is always an optimum ground state of
H. Thus the ground state degeneracy grows exponentially
with system size.

4 Properties of the ground state

Each arrow configuration {b} on the external bonds gen-
erates an optimum ground state |Ψ{b}0 〉 of H. The calcu-
lation of ground state expectation values requires taking
the average over all these configurations

〈A〉Ψ0 =
1
B

∑
{b}
〈A〉

Ψ
{b}
0

. (12)

2 Common prefactors have been omitted.
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Fig. 2. Inverse longitudinal (thin) and transversal (thick) cor-
relation length as a function of the parameter a.

B denotes the total number of such configurations. By
using the techniques developed in Appendices A and B,
ground state expectation values of arbitrary single-spin
observables and two-spin correlation functions can be ob-
tained exactly. As described in Appendix A, the average
over all boundary arrow configurations is performed au-
tomatically. Note that the formulae given below hold for
all system sizes, on which the considered observables can
be applied (cf. Appendix B). In particular the results are
valid in the thermodynamic limit. This pathological effect
occurs only on the Cayley tree, optimum ground states on
regular lattices exhibit a non-trivial finite-size behaviour.

The first interesting expectation values are the com-
ponents of the canonical spin operator

〈Sxi 〉Ψ0 = 〈Syi 〉Ψ0 = 〈Szi 〉Ψ0 = 0 . (13)

This is the expected result as the boundary conditions
and the global ground states preserve the symmetries of
the Hamiltonian, in particular spin-flip symmetry and ro-
tational invariance in the xy-plane of spin space. (13) im-
plies that the total magnetization is zero, so the global
ground state is antiferromagnetic.

Although the local magnetization vanishes, its fluctu-
ations are non-trivial

〈(Szi )2〉Ψ0 =
9
4
− 6

3 + a2
, (14)

which increases monotonically from 1
4 to 9

4 as a function of
a2, thus covering the full range of possible values. Because
of rotational symmetry in the xy-plane of spin space we
also obtain

〈(Sxi )2〉Ψ0 = 〈(Syi )2〉Ψ0 =
1
2

[
3
2

(
3
2

+ 1
)
− 〈(Szi )2〉Ψ0

]
=

3
4

+
3

3 + a2
· (15)

In Appendix B the transfer matrix technique has been
employed to compute two-point correlation functions. The

〈Szi Szi+1〉Ψ0
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Fig. 3. Longitudinal nearest-neighbour correlation as a func-
tion of the parameter a.

result for the longitudinal correlation function is

〈Szi Szj 〉Ψ0 = −
(

1 + 3a2

6 + 2a2

)2(1− a2

3 + a2

)|i−j|−1

, (16)

where |i−j| is the distance between sites i and j. Note
that the correlation decays exponentially as a function of
the distance and its sign alternates if a2 > 1. The corre-
sponding longitudinal correlation length can be read off
from equation (16). Its inverse is given by

ξ−1
l = ln

∣∣∣∣3 + a2

1− a2

∣∣∣∣ , (17)

which is plotted as a function of the parameter a in
Figure 2. Note the divergence at a = 1. In this special
case, longitudinal correlations between spins with a dis-
tance of 2 or larger are completely absent (cf. Eq. (16)).

As the longitudinal one, the transversal two-spin cor-
relation function decays exponentially as a function of the
distance:

〈Sxi Sxj 〉Ψ0 =

(
2 +
√

3σa
3 + a2

)2(
2

3 + a2

)|i−j|−1

. (18)

Thus the inverse transversal correlation length is

ξ−1
t = ln

3 + a2

2
· (19)

It is also plotted in Figure 2, together with the longitudinal
one. Both inverse correlation length, ξ−1

l and ξ−1
t , are non-

zero for all finite values of a, hence the model is never
critical.

In the special case |i−j| = 1 equation (16) yields the
longitudinal nearest-neighbour correlation 〈Szi Szi+1〉Ψ0 .
Starting at − 1

36 for a = 0 it decreases monotonically and
approaches − 9

4 asymptotically for large values of a, as
shown in Figure 3.

There are three noteworthy special points in the pa-
rameter space. The first one is a2 = 1. In this case
all non-vanishing vertices of the classical vertex model
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which corresponds to the inner product 〈Ψ0|Ψ0〉 (cf. Ap-
pendix A) have the same weight, namely 1. This corre-
sponds to infinitely high temperature in the language of
classical vertex models, i.e. disorder is maximal. The van-
ishing of longitudinal correlations for a2 = 1 (cf. Fig. 2)
is consistent with this interpretation.

The next interesting special case is the isotropic point
a = −

√
3, σ = −1 where we can adjust the λ-parameters

so that the local interaction operator (1) has full SO(3)
symmetry. As mentioned in Section 2, this model has al-
ready been investigated in [2]. The reported inverse cor-
relation length ξ−1

iso = ln 3 for open boundary conditions
coincides with the results obtained from (17) and (19).

Finally we consider the limit a2 →∞. As can be seen
from (5) and (6) the global ground state is dominated by
only four vertices in this limit, namely
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on the first sublattice and
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�
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@

hHH��
����

AA
HH

: σa|3〉

on the second one. The two ways, in which these vertices
can be combined on the Cayley tree, represent the two
different Néel states. All spins on the first sublattice are in
the |3〉 state, the others are in the |3〉 state, and vice versa.
Therefore this special case is called the Néel limit. Note
that the ground state degeneracy is higher than in the
generic case. In addition to the degeneracy due to the open
boundary conditions there is also a “bulk degeneracy”, as
some of the local ground states (9) become simple tensor
products of single-spin states.

5 Summary

We have investigated the ground state problem of a class of
antiferromagnetic quantum spin- 3

2 models on the Cayley
tree with coordination number 3. Apart from the topol-
ogy the Hamiltonian is the same as in our previous works
on the hexagonal lattice [5] and the two-leg ladder [6]. It
is defined in terms of the nearest neighbour interaction,
which contains 5 continuous parameters and has parity
invariance, spin-flip invariance, and rotational invariance
in the xy-plane of spin space.

Due to the open boundary conditions the ground state
degeneracy grows exponentially with system size. We have
constructed the global ground states explicitly by using
the vertex state model approach. These are so-called op-
timum ground states, i.e. they are not only ground states
of the global Hamiltonian, but simultaneously minimize
all local interaction operators. The vertex state model
contains a continuous parameter a, which controls z-axis
anisotropy, and a discrete parameter σ = ±1.

Vertex state models are generalizations of the ma-
trix product ground states, which have been used in [3,4]
and [7] to investigate the ground state of one-dimensional
quantum spin systems. Relations between vertex state
models and the density matrix renormalization group
(DMRG) method have been discussed in [8,9].

The calculation of ground state expectation values
leads to a classical vertex model on the same lattice as
the original quantum spin model. Due to the hierarchical
structure of the Cayley tree this classical model can be
solved exactly by using recursion relations and the trans-
fer matrix technique. The result of our calculations is that
the model has vanishing sublattice magnetization and ex-
ponentially decaying correlation functions. Exact formu-
lae for the nearest neighbour correlation, the longitudinal
and transversal correlation lengths, and for the fluctua-
tions of the magnetization have been derived. For special
values of a and σ the global ground state coincides with
the so-called valence bond solid (VBS) ground state.

Appendix A: Calculation of single-spin
expectation values

For the moment we consider only one of the many global
ground states, namely the vertex state model with all
boundary arrows pointing out of the leaf sites. Denote
this ground state by |Ψ∗0 〉. Within this ground state, the
expectation value of an observable Ai, which only acts on
the spin at site i, is defined as

〈Ai〉Ψ∗0 =
〈Ψ∗0 |Ai|Ψ∗0 〉
〈Ψ∗0 |Ψ∗0 〉

· (A.1)

The denominator can be interpreted as two identical ver-
tex state models on top of each other, representing the
bra- and the ket-vector, respectively. Since the vertices at
each site generate only local single-spin states, the inner
product can be taken separately at each site before the
interior bonds are summed out. Hence 〈Ψ∗0 |Ψ∗0 〉 can be in-
terpreted as the partition function of a classical vertex
model with vertices defined as

µ2µ1

ν1

ν2

ν3µ3

ν2

ν3
ν1

µ1

µ3

µ2
·

(A.2)
These vertices have the following properties:

– The vertex weights are real numbers, not single-spin
states.

– There are two arrow variables on each bond, originat-
ing from the bra- and the ket-vector.

– The vertices are identical on both sublattices of the
Cayley tree as σ2 = 1.

– Only 20 of the 64 different vertices have a non-
vanishing weight since the inner product between dif-
ferent Sz-eigenstates is zero.
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Ai

Fig. 4. Graphical representation of single-spin expectation val-
ues.

The numerator of (A.1) corresponds to the same clas-
sical vertex model as the denominator, except for site i
where the vertices are modified. At this special site, the
classical vertices are given by inserting the operator Ai
between the bra- and the ket-vector on the r.h.s. of (A.2).
The graphical representation of 〈Ψ∗0 |Ai|Ψ∗0 〉 is shown in
Figure 4. The affected site i is surrounded by three un-
modified branches of the classical vertex model. In the
following, these branches are denoted by Z←←n , Z→→n , Z←→n ,
and Z→←n , defined as

Zµνn =
µ

ν
(A.3)

Here the lower index n denotes the order, i.e. the branch
contains 2n−1 sites. Due to the hierarchical structure the
values of (A.3) can be calculated by using recursion re-
lations. Each Zn+1 is given by concatenating two copies
of Zn to a single classical vertex and summing out the
connecting bonds. This yields the recursion relations

Z←←n+1 =
(
Z←←n + Z→→n

)2

+ (a2 − 1)
(
Z→→n

)2

+ 2Z←→n Z→←n
Z→→n+1 =

(
Z←←n + Z→→n

)2

+ (a2 − 1)
(
Z←←n

)2

+ 2Z←→n Z→←n
Z←→n+1 =

(
Z←←n + Z→→n

)
Z←→n

Z→←n+1 =
(
Z←←n + Z→→n

)
Z→←n .

(A.4)
In order to actually solve these coupled equations it is
necessary to specify the initial values Z←←0 , Z→→0 , Z←→0 , Z→←0
which are of course determined by the boundary condi-
tions. For |Ψ∗0 〉, which is defined as having all boundary
arrows pointing out of the leaf sites, the correct choice
would be to set Z→→0 = 1 and the other three initial values
to zero3.

3 Multiplying the set of initial values with a common non-
zero constant leaves all expectation values unchanged. So

Z→
→
0 = 1 is a convenient normalization.

However, in order to calculate ground state expecta-
tion values, definition (12) requires the summation over
all arrow configurations on the external bonds. It turns
out that this summation can be carried out automatically
by using the initial values

Z←
←
0 = Z→

→
0 = 1 and (A.5)

Z→
←
0 = Z←

→
0 = 0 . (A.6)

(A.5) ensures that configurations with incoming and out-
going arrows are weighted equally and (A.6) eliminates all
“mixed” terms, i.e. terms where bra- and ket-vector are
different.

As a consequence of these initial values we obtain

Z←
←
n = Z→

→
n and (A.7)

Z→
←
n = Z←

→
n = 0 (A.8)

for all n ≥ 0. This is immediately clear from the recursion
relations. Inserting (A.7, A.8) into (A.4) yields

Z←
←
n+1 = Z→

→
n+1 = (3 + a2)

(
Z←
←
n

)2

, (A.9)

which has the solution

Z←
←
n = Z→

→
n = (3 + a2)(2n−1) . (A.10)

Note that the exponent 2n−1 is simply the number of
sites of the branch. It is now straightforward to calculate
the ground state expectation value of the local observable
Ai as

〈Ai〉Ψ0 =
Z(Ai)
Z
· (A.11)

Z(Ai) is given by attaching the solution (A.10) to all
bonds of the classical vertex modified by the operator Ai
(cf. Fig. 4). The denominator is simply

Z = Z(1) = 2(3 + a2)N , (A.12)

N being the total number of sites. Due to the product
structure of the solution (A.10) the results for all expec-
tation values are independent of N . Additional powers
of 3 + a2 drop out in the quotient (A.11). As shown in
Appendix B, a similar effect also occurs in the general case
of k-point correlation functions. This means that there are
no finite size effects. Note that although the classical ver-
tex model has this simple product solution, the underlying
vertex state model generates a highly non-trivial global
ground state.

Equation (A.8) means that the classical vertex model
contains no unequal arrow pairs on its bonds. The rea-
son for this exact vanishing is that only classical vertices
with zero or two unequal arrow pairs have a non-vanishing
weight. Two of the three bonds of a leaf site are external
bonds, which do not carry unequal arrow pairs (due to
the open boundary conditions). So each leaf site provides
the next hierarchy of vertices only with equal arrow pairs,
and so on. Thus unequal arrow pairs can never enter the
classical vertex model. This is in contrast to the hexag-
onal lattice [5], where unequal arrow pairs are in general
present, albeit in a very low concentration for most values
of the parameter a. This is a dynamical effect.
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Fig. 5. Graphical representation of two-spin correlation func-
tions.

Appendix B: Calculation of two-spin
expectation values

In this appendix we extend the technique developed in
Appendix A to two-point correlation functions 〈AiBj〉Ψ0 .
Ai and Bj are observables which only act on sites i and
j, respectively.

The Cayley tree is free of loops, so there is exactly one
path from site i to site j. Figure 5 shows the topological
structure of the corresponding classical vertex model. The
branches Zµνn are known from (A.8) and (A.10), so the
remaining problem is the summation along the path from
i to j. If |i− j| denotes the distance between these two
sites the path is given by the (|i−j|−1)-fold product of
the periodicity element4
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2

µ ν
(B.1)

The bonds µ1ν1 and µ2ν2 connect this element to the pre-
vious and to the next periodicity element on the path.
The idea is to interpret (B.1) as a transfer matrix T
[3,4,6] and to use its eigenbasis to calculate T |i−j|−1.

Each bond carries two binary arrow variables, so T is
a 4× 4-matrix. If the following mapping of arrow config-
urations to matrix indices is used

←← : 1 →← : 3
→→ : 2 ←→ : 4 (B.2)

then the transfer matrix is given by

T = cZ

 2 1 + a2 0 0
1 + a2 2 0 0

0 0 2 0
0 0 0 2

 . (B.3)

cZ = (3 + a2)(2n−1) is the prefactor due to the attached
branch Zµνn . The eigenvalues χk and the corresponding

4 Strictly speaking the order n of the branch Zµνn can be
different for each vertex along the path from site i to site j.
However, for the same reason as in Appendix A the order of
these branches is completely irrelevant for the calculation of
expectation values.

normalized eigenvectors |uk〉 of this real symmetric ma-
trix are

χ1 = (3 + a2)cZ |u1〉 = (1, 1, 0, 0)/
√

2
χ2 = (1− a2)cZ |u2〉 = (1,−1, 0, 0)/

√
2

χ3 = 2cZ |u3〉 = (0, 0, 1, 0)
χ4 = 2cZ |u4〉 = (0, 0, 0, 1) .

(B.4)
This eigensystem can now be used to compute the desired
powers of the transfer matrix as

T |i−j|−1 =
∑
k

χ
|i−j|−1
k |uk〉〈uk| . (B.5)

The final step is to assemble all components of the classi-
cal vertex model as shown in Figure 5. To the left/right-
hand side of (B.5) we attach the vertices modified by the
observable Ai/Bj, respectively. Unmodified branches Zn
are attached to the remaining four bonds. In analogy to
(A.11) the desired expectation value is given by

〈AiBj〉Ψ0 =
Z(Ai, Bj)

Z
· (B.6)

The numerator is the partition function of the modified
vertex model calculated in this appendix and the denom-
inator is the partition function of the unmodified vertex
model Z = 2(3 + a2)N . As in the previous appendix, the
average over all configurations of the boundary arrows is
performed automatically.

Note that the order of the branch Zn in (B.1) enters
the calculation only via the factor cZ which appears in
all eigenvalues of T (B.4). However, cZ drops out in the
quotient (B.6), so the order of the branches attached to the
path from site i to site j is irrelevant. The same holds for
the four branches on the l.h.s. and on the r.h.s. of Figure 5.
Therefore the expectation value (B.6) only depends on the
observables Ai and Bj and on their distance |i−j|. The
size of the rest of the Cayley tree has no influence.

The technique developed in this appendix can be easily
generalized to k-point correlation functions. If k is finite
there is always a decomposition of the full pseudo-lattice
into a finite number of

– paths,
– modified vertices, and
– unmodified branches.

These objects can be dealt with separately. The resulting
expectation values depend only on the observables them-
selves and the length of the paths between the vertices
modified by these observables. The size of the unmodified
branches is irrelevant. In this sense there are no finite size
effects.
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